MATH 170 - CHAPTER 2

Name:
2.1 Definitions II - Geometric

Need To Know

- Alternate definitions of Trig Functions
- Property of cofunctions
- Special Triangles and exact values
rigonometry = triangle measure
Generally capital letters for angles (A, B, C) and lower case letters for the sides (a, b, c)

Key words:
opposite, adjacent, hypotenuse

rigonometry = triangle measure

$\sin B=\frac{\text { opposite } B}{\text { hypotenuse }}=-=$
$\cos B=\frac{\text { adjacent } B}{\text { hypotenuse }}=-=$
$\tan B=\frac{\text { opposite } B}{\text { adjacent } B}=-=$
$\sec B=\frac{\text { hypotenuse }}{\text { adjacent } B}=-=$

Cofunctions Theorem:
A trig functions of an angle is always equal to the cofunction of the angle. of the

Practice

Find sine, cosine and tangent of B.

Complete each:
$\cos 40^{\circ}=\sin$ \qquad
$\cot 12^{\circ}=\tan$ \qquad
$\sin y=\cos$ \qquad
Exact values
Recall:
special triangles

θ	0°	30°	45°	60°	90°
$\sin \theta$					
$\cos \theta$					
$\tan \theta$					

Practice

Let $x=30^{\circ}, y=45^{\circ}$ and $z=60^{\circ}$. Find each.
$4 \cos y$
$-2 \sin \left(y+45^{\circ}\right)$
$3 \sin 2 x$
$\sec z$

> end

2.2 Calculators and Trig

Need To Know

- Convert
- Decimal degrees to DMS
- DMS to decimal degrees
- Use the calculator
- to get approximates
- to test identities
- Find θ with the inverse Trig Function

- Conversion Ratios

$1^{\circ}=$ \qquad
$1^{\prime}=$ \qquad
Convert decimal degrees into DMS
18.75°
34.45°
Convert DMS into decimal degrees
$78^{\circ} 21^{\prime}$

Find the Mode command in your calculator.
Note the setting between Degree and Radian
Calculate:
$\sin 42^{\circ} 15^{\prime}$
$\cot 21^{\circ}$

You try:
$\sin 50^{\circ} 30^{\prime}$
$\sec 84^{\circ} 48^{\prime}$

Testing Identities

What do you know about

1) $\sin 33^{\circ}$ and $\cos 57 ?^{\circ}$
2) $\tan 10.5^{\circ}=\cot$ \qquad
3) $\cos ^{2} 85^{\circ}+\sin ^{2} 85^{\circ}=$ \qquad

Find the inverse trig functions on your calculator.
Find θ

$$
\sin \theta=0.3971 \quad \sec \theta=1.0801
$$

You try find θ
$\cot \theta=0.4327$
end

2.3 Solving Triangles

Need To Know

- Significant digits
- Solving triangles

Significant Digits

Definition:

The number of significant digits in a number is found \qquad

Number	Significant Digits
43100	
97.3	
6.0	
6.000	
0.127	
0.000003	

43100 • 0.127
$5473.7 \simeq 5.47 \times 10^{3}$

Note:
Angle results have one less sig. dig. than the sides.

$$
\begin{array}{ll}
A= & a=5.555 \mathrm{mi} \\
B=44.44^{\circ} & b= \\
C=? & c=
\end{array}
$$

- Practice Solving Right Triangles

Given $\angle A B D=53^{\circ}$
$C=48^{\circ}, B C=42$, find x and h.

- Practice Solving Right Triangles

Given $\angle B D C=48^{\circ}$
$A=32^{\circ}, A B=17, D B=12$ find x and y.

end

- 2.4 Application with Triangles

Need To Know

- Angle of elevation and depression
- Bearing of a line
- Applications

Definitions

Definition:

The angle measured \qquad from the horizontal is the angle of .
The angle measured \qquad from the horizontal is the angle of .

Definition:

The bearing of a line is an angle measured off of the North-South axis to some degree East or West.

\#15 A boat goes 25 miles $\mathrm{N} 42^{\circ} \mathrm{E}$, turns 90°, then goes 18 miles $\mathrm{S} 48^{\circ} \mathrm{E}$.
Find their distance from home and the bearing from home.
\#22 Building is 60 ft tall
Roof to roof depression is 34.5°
Roof to ground depression is 63.2°
How tall is the shorter building?

1.|Practice Solving Applications

A man is stuck on a mountain.
A rescuer measures a 25° angle of elevation to the man.
He walks at a right angle for 20.0 ft . His new path to the mountain forms an 85° angle to the mountain base.
 Find the rope needed.

2.5 Vectors - A Geometric Look

Need To Know

- Vector concept
- Vocabulary and notation
- Add and Subtract vectors
- Direction vectors
- Applications

Vector Concept and Definition

Force, velocity, and acceleration are physical concepts that must be expressed with 2 parameters.

Definition
A vector is \qquad .

A scalar is \qquad
\qquad .
Notation: Graphs:
V
$\overrightarrow{V B}$
$\overrightarrow{A B}$
x
$|V|$
\qquad

Component vectors

Any vector can be decomposed in to two parts -
the x-component and the y-component vectors.
$V_{x}=$ \qquad
$V_{y}=$ \qquad
$\mathrm{V}=$ \qquad
Given V in QI with $\left|\mathrm{V}_{\mathrm{x}}\right|=2.2$ and $\left|\mathrm{V}_{\mathrm{y}}\right|=5.8$
Find V .

Practice and Application

A plane has an airspeed of 140 mph on $\mathrm{S} 50^{\circ} \mathrm{E}$.
The wind is blowing 14 mph on 40°.
Find the ground speed and true course.

Static Equilibrium - a 25 lb weight is resting on an incline of 10 . Find the magnitude of the normal and friction forces.

