<u>MATH 170 – CHAPTER 2</u>

2.1 Definitions II - Geometric

Need To Know

- Alternate definitions of Trig Functions
- Property of cofunctions
- Special Triangles and exact values

rigonometry = triangle measure

Generally capital letters for angles (A, B, C) and lower case letters for the sides (a, b, c)

sin
$$B = \frac{opposite B}{hypotenuse} = -=$$

 $\cos B = \frac{adjacent B}{hypotenuse} = -=$

$$\tan B = \frac{opposite B}{adjacent B} = - =$$

$$hypotenuse$$

 $\sec B = \frac{hypotenuse}{adjacent B} = - =$

Cofunctions Theorem:

A trig functions of an angle is always equal to the cofunction of the ______ of the angle.

Find sine, cosine and tangent of B.

<u>></u>в

Complete each: cos 40° = sin _____ cot 12° = tan _____ sin y = cos _____

Recall:

special triangles	θ	0°	30°	45°	60°	90°
1 \$\sqrt{2}\$	sin θ					
1	$\cos \theta$					
1 2	tan θ					
$\sqrt{3}$						

Let $x = 30^{\circ}$, $y = 45^{\circ}$ and $z = 60^{\circ}$. Find each.

4cos y

 $-2sin(y + 45^{\circ})$

3sin 2x

sec z

end

Need To Know

- Convert
 - Decimal degrees to DMS
 - DMS to decimal degrees
- Use the calculator
 - to get approximates
 - to test identities
- ${\scriptstyle \bullet}$ Find θ with the inverse Trig Function

Convert decimal degrees into DMS 18.75 ° 34.45 °

Convert DMS into decimal degrees $78^{\circ}21'$

Conversions with the Calc

Find the Mode command in your calculator. Note the setting between Degree and Radian Calculate: sin 42°15' cot 21°

You try: sin 50°30' sec 84°48'

What do you know about

- 1) sin 33° and cos 57?°
- 2) tan 10.5° = cot _____
- 3) $\cos^2 85^\circ + \sin^2 85^\circ =$

Find θ with the Calculator

Find the inverse trig functions on your calculator.

Find θ sin θ = 0.3971 sec θ = 1.0801

You try find θ cot θ = 0.4327

end

Need To Know

- Significant digits
- Solving triangles

Definition:

The number of *significant digits* in a number is found _____

Number	Significant Digits
43100	
97.3	
6.0	
6.000	
0.127	
0.000003	

43100 • 0.127 5473.7 <u>~</u> 5.47 x 10³

×.

<u>Note</u>:

Angle results have one less sig. dig. than the sides.

A= a=5.555 mi B= 44.44° b= C= ? c=

end

Bearing of a line

Applications

Definition:

 The angle measured ______ from the horizontal is the <u>angle of</u>.

 The angle measured ______ from the horizontal is the <u>angle of</u>.

Definition:

The *bearing of a line* is an angle measured off of the North-South axis to some degree East or West.

#15 A boat goes 25 miles N42°E, turns 90°, then goes 18 miles S48°E. Find their distance from home and the bearing from home.

Practice Solving Applications

Click to remove picture

#22 Building is 60 ft tall Roof to roof depression is 34.5° Roof to ground depression is 63.2° How tall is the shorter building?

Practice Solving Applications

A man is stuck on a mountain. A rescuer measures a 25° angle of elevation to the man.

He walks at a right angle for 20.0 ft. His new path to the mountain forms an 85° angle to the mountain base. Find the rope needed.

end

Need To Know

- Vector concept
- Vocabulary and notation
- Add and Subtract vectors
- Direction vectors
- Applications

Vector Concept and Definition

Force, velocity, and acceleration are physical concepts that must be expressed with 2 parameters.

Definition A <u>vector</u> is ______.

_.

А	scalar	is	

Notation and Graphs

Notation:	Graphs:	Add & Subt.
V		Vectors:
\vec{V}		
\overline{AB}		
x		
V		

Navigation Direction

There are other ways to indicate bearing angles. **Definition**:

The angle of direction is _____

If θ is 185°, then in which quadrant will the terminal side lie?

Component vectors

Any vector can be decomposed in to two parts – the x-component and the y-component vectors.

$V_x = $		
$V_v =$		
V =		
	.	

Given V in QI with $|V_x| = 2.2$ and $|V_y| = 5.8$ Find V.

Practice and Application

A plane has an airspeed of 140 mph on S50°E. The wind is blowing 14 mph on 40°. Find the ground speed and true course.

Static Equilibrium – a 25 lb weight is resting on an incline of 10. Find the magnitude of the normal and friction forces.